- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Agote, Anartz (1)
-
Agrawal, Neeraj (1)
-
Aizpuru, Iosu (1)
-
Alberdi, Borja (1)
-
Arruti, Asier (1)
-
Chacko, Vivek Thomas (1)
-
Chen, Chen (1)
-
Chen, Minjie (1)
-
Chen, Xia (1)
-
Chen, Yiting (1)
-
Cheng, Ming (1)
-
Costinett, Daniel (1)
-
Cui, Binyu (1)
-
Cui, Han Helen (1)
-
Dang, Yongliang (1)
-
Dong, Yuchen (1)
-
Dou, Yu (1)
-
Forster, Nikolas (1)
-
Froehle, Kody (1)
-
Giuffrida, Alessio (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper summarizes the main results and contributions of the MagNet Challenge 2023, an open-source research initiative for data-driven modeling of power magnetic materials. The MagNet Challenge has (1) advanced the stateof-the-art in power magnetics modeling; (2) set up examples for fostering an open-source and transparent research community; (3) developed useful guidelines and practical rules for conducting data-driven research in power electronics; and (4) provided a fair performance benchmark leading to insights on the most promising future research directions. The competition yielded a collection of publicly disclosed software algorithms and tools designed to capture the distinct loss characteristics of power magnetic materials, which are mostly open-sourced. We have attempted to bridge power electronics domain knowledge with state-of-the-art advancements in artificial intelligence, machine learning, pattern recognition, and signal processing. The MagNet Challenge has greatly improved the accuracy and reduced the size of data-driven power magnetic material models. The models and tools created for various materials were meticulously documented and shared within the broader power electronics community.more » « less
An official website of the United States government
